Intraislet release of interleukin 1 inhibits beta cell function by inducing beta cell expression of inducible nitric oxide synthase
نویسندگان
چکیده
Cytokines, released in and around pancreatic islets during insulitis, have been proposed to participate in beta-cell destruction associated with autoimmune diabetes. In this study we have evaluated the hypothesis that local release of the cytokine interleukin 1 (IL-1) by nonendocrine cells of the islet induce the expression of inducible nitric oxide synthase (iNOS) by beta cells which results in the inhibition of beta cell function. Treatment of rat islets with a combination of tumor necrosis factor (TNF) and lipopolysaccharide (LPS), conditions known to activate macrophages, stimulate the expression of iNOS and the formation of nitrite. Although TNF+LPS induce iNOS expression and inhibit insulin secretion by intact islets, this combination does not induce the expression of iNOS by beta or alpha cells purified by fluorescence activated cell sorting (Facs). In contrast, IL-1 beta induces the expression of iNOS and also inhibits insulin secretion by both intact islets and Facs-purified beta cells, whereas TNF+LPS have no inhibitory effects on insulin secretion by purified beta cells. Evidence suggests that TNF+LPS inhibit insulin secretion from islets by stimulating the release of IL-1 which subsequently induces the expression of iNOS by beta cells. The IL-1 receptor antagonist protein completely prevents TNF+LPS-induced inhibition of insulin secretion and attenuates nitrite formation from islets, and neutralization of IL-1 with antisera specific for IL-1 alpha and IL-1 beta attenuates TNF+LPS-induced nitrite formation by islets. Immunohistochemical localization of iNOS and insulin confirm that TNF+LPS induce the expression of iNOS by islet beta cells, and that a small percentage of noninsulin-containing cells also express iNOS. Local release of IL-1 within islets appears to be required for TNF+LPS-induced inhibition of insulin secretion because TNF+LPS do not stimulate nitrite formation from islets physically separated into individual cells. These findings provide the first evidence that a limited number of nonendocrine cells can release sufficient quantities of IL-1 in islets to induce iNOS expression and inhibit the function of the beta cell, which is selectively destroyed during the development of autoimmune diabetes.
منابع مشابه
Potential role of resident islet macrophage activation in the initiation of autoimmune diabetes.
The purpose of this study was to evaluate the effects of resident islet macrophage activation on beta cell function. Treatment of freshly isolated rat islets with TNF-alpha and LPS results in a potent inhibition of glucose-stimulated insulin secretion. The inhibitory actions of TNF + LPS are mediated by the intraislet production and release of IL-1 followed by IL-1-induced inducible nitric oxid...
متن کاملIntraislet Release of Interleukin 1 Inhibits 3 Cell Function by Inducing 3 Cell Expression of Inducible Nitric Oxide Synthase
Cytokines, released in and around pancreatic islets during insulitis, have been proposed to participate in B-cell destruction associated with autoimmune diabetes. In this study we have evaluated the hypothesis that local release of the cytokine interleukin 1 (IL-1) by nonendocrine cells of the islet induce the expression of inducible nitric oxide synthase (iNOS) by 3 cells which results in the ...
متن کاملExpression of nitric oxide synthase by cytokines in vascular smooth muscle cells.
In cultured vascular smooth muscle cells, the baseline mRNA and protein levels of an inducible type of nitric oxide synthase were barely detectable. Interferon gamma, tumor necrosis factor-alpha, and interleukin-1 beta each markedly increased mRNA and protein levels of this enzyme in parallel with the production of nitrite, a stable oxidative metabolite of nitric oxide. Actinomycin D abolished ...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 181 شماره
صفحات -
تاریخ انتشار 1995